ADVANCES IN DATA BASE MANAGEMENT SYSTEMS [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – I

Subject Code	16SSE151/ 16SIT13 16SCS13	/ IA Marks	20
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
CREDITS – 04			
Course objectives: This course will enable students to			
• Define parallel and distributed databases and its applications.			
Show applications of Object Oriented database			
• Explain basic concepts, principles of intelligent databases.			
• Utilize the advanced topics of data warehousing and mining.			
• Infer emerging and advanced data models			
• Extend knowledge in research topics of databases.			
Module 1			Teaching Hours
Review of Relational Data Model and Rela	tional Database Con	straints: Relational	10 Hours
model concepts; Relational model constraints and relational database schemas; Update			
operations, anomalies, dealing with constraint violations, Types and violations.			
Overview of Object-Oriented Concepts - Objects, Basic properties. Advantages,			
examples, Abstract data types, Encapsulation, class hierarchies, polymorphism,			
examples.			
Module 2		~	
Object and Object-Relational Databases	: Overview of OOP	; Complex objects;	10 Hours
Identity, structure etc. Object model of ODMG, Object definition Language ODL;			
object Query Language OQL, Conceptual design of Object database. Overview of			
and related issues for extended type systems; syntax and dome examples. The posted			
relational model. Overview of $C + +$ language binding:			
Module 3			
Parallel and Distributed Databases: Architectures for parallel databases: Parallel 10			
query evaluation: Parallelizing individual o	perations: Parallel or	erv optimizations.	io nours
Introduction to distributed databases; Distributed DBMS architectures; Storing data in a			
Distributed DBMS; Distributed catalog management; Distributed Query processing;			
Updating distributed data; Distributed transactions; Distributed Concurrency control and			
Recovery.		-	
Module 4			
Data Warehousing, Decision Support and	Data Mining: Introd	uction to decision	10 Hours
support; OLAP, multidimensional model; W	indow queries in SQ	L; Finding answers	
quickly; Implementation techniques for OLAP; Data Warehousing; Views and Decision			
support, View materialization, Maintaining materialized views. Introduction to Data			
Mining; Counting co-occurrences; Mining for rules; Tree-structured rules; ROC and			
data straams: Additional data mining tasks			
data streams; Additional data mining tasks.			
Widdule 5 Enhanced Data Models for Some Advanced Applications: Active detabase concerts 10 Hours			
and triggers: Temporal Spatial and Deduction	ve Databases – Ras	ic concepts More	TO HOULS
Recent Applications: Mobile databases:	Multimedia databas	es: Geographical	
Information Systems: Genome data managem	ient.	es, coographical	
Course Outcomes			

The students should be able to:

- Select the appropriate high performance database like parallel and distributed database
- Infer and represent the real world data using object oriented database
- Interpret rule set in the database to implement data warehousing of mining
- Discover and design database for recent applications database for better interoperability

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

- 1. Elmasri and Navathe: Fundamentals of Database Systems, Pearson Education, 2013.
- 2. Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2013.
- 1. Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System Concepts, 6th Edition, McGraw Hill, 2010.