CLOUD COMPUTING [As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER - I

	SEMESTER – I		
Subject Code	16SCS12/16SCE12		
-	16SIT22/16SSE254	IA Marks	20
	16SCN22/16LNI151		
Number of Lecture Hours/Week	04	Exam Marks	80
Total Number of Lecture Hours	50	Exam Hours	03
	CREDITS – 04		

Course objectives: This course will enable students to

- Define and Cloud, models and Services.
- Compare and contrast programming for cloud and their applications
- Explain virtuaization, Task Scheduling algorithms.
- Apply ZooKeeper, Map-Reduce concept to applications.

Module 1	Teaching
	Hours
Introduction, Cloud Infrastructure: Cloud computing, Cloud computing delivery	10 Hours
models and services, Ethical issues, Cloud vulnerabilities, Cloud computing at Amazon,	
Cloud computing the Google perspective, Microsoft Windows Azure and online services,	
Open-source software platforms for private clouds, Cloud storage diversity and vendor	
lock-in, Energy use and ecological impact, Service level agreements, User experience	
and software licensing. Exercises and problems.	
Module 2	
Cloud Computing: Application Paradigms.: Challenges of cloud computing,	10 Hours
Architectural styles of cloud computing, Workflows: Coordination of multiple activities,	
Coordination based on a state machine model: The Zookeeper, The Map Reduce	
programming model, A case study: The Gre The Web application, Cloud for science and	
engineering, High-performance computing on a cloud, Cloud computing for Biology	
research, Social computing, digital content and cloud computing.	
Module 3	
Cloud Resource Virtualization: Virtualization, Layering and virtualization, Virtual	10 Hours
machine monitors, Virtual Machines, Performance and Security Isolation, Full	
virtualization and paravirtualization, Hardware support for virtualization, Case Study:	
virtualization and paravirtualization, marcware support for virtualization, ease study.	

Xen a VMM based paravirtualization, Optimization of network virtualization,			
vBlades, Performance comparison of virtual machines, The dark side of			
virtualization, Exercises and problems			
Module 4			
Cloud Resource Management and Scheduling: Policies and mechanisms for resource 10			
Hours management, Application of control theory to task scheduling on a cloud, Stability of a			
two-level resource allocation architecture, Feedback control based on dynamic thresholds,			
Coordination of specialized autonomic performance managers, A utility-			
based model for cloud-based Web services, Resourcing bundling: Combinatorial			
auctions for cloud resources, Scheduling algorithms for computing clouds, Fair			
queuing, Start-time fair queuing, Borrowed virtual time, Cloud scheduling subject to			
deadlines, Scheduling MapReduce applications subject to deadlines, Resource			
management and dynamic scaling, Exercises and problems.			
Module 5			
Cloud Security, Cloud Application Development: Cloud security risks, Security: The 10			
Hours top concern for cloud users, Privacy and privacy impact assessment, Trust, Operating			
system security, Virtual machine Security, Security of virtualization, Security risks			
posed by shared images, Security risks posed by a management OS, A trusted virtual			
machine monitor, Amazon web services: EC2 instances, Connecting clients to cloud			
instances through firewalls, Security rules for application and transport layer			
protocols in EC2, How to launch an EC2 Linux instance and connect to it, How to			
use S3 in java, Cloud-based simulation of a distributed trust algorithm, A trust			
management service, A cloud service for adaptive data streaming, Cloud based			
optimal FPGA synthesis .Exercises and problems.			
Course Outcomes			
The students should be able to:			
Compare the strengths and limitations of cloud computing			
• Identify the architecture, infrastructure and delivery models of cloud computing			
• Apply suitable virtualization concept.			
Choose the appropriate cloud player			
• Address the core issues of cloud computing such as security, privacy and interoperability			
Design Cloud Services			
• Set a private cloud			
Question paper pattern:			
The question paper will have ten questions.			
There will be 2 questions from each module.			
Each question will have questions covering all the topics under a module. The students will			
have to answer 5 full questions, selecting one full question from each module.			
Text Books:			
1. Dan C Marinescu: Cloud Computing Theory and Practice. Elsevier(MK) 2013.			
Reference Books:			
1. Rajkumar Buyya, James Broberg, Andrzej Goscinski: Cloud Computing Principles and			
Paradigms, Willey 2014.			
2. John W Rittinghouse, James F Ransome:Cloud Computing Implementation, Management			
and Security, CRC Press 2013.			
• • • • • • • • • • • • • • • • • • •			