ADVANCES IN COMPUTER GRAPHICS			
[As per Choice Based Credit System (CBCS) scheme]			
(Effective from the academic year 2016 -2017)			
SEMESTER – I			
Subject Code	16SCS154 /16SIT422	IA Marks	20
Number of Lecture Hours/Week	03	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
CREDITS – 03			
Course objectives: This course will enable students to			
• Explain basic and fundamental computer graphics techniques.			
 Compare and contrast image synthesis techniques. 			
• Examine applications of modeling, design and visualization.			
 Discuss different color modeling and computer animation. 			
Explain hierarchical modeling and graphing file formats.			
Module 1			Teaching
			Hours
Three-Dimensional Object Representations: Polyhedra, OpenGL Polyhedron Functions,			8 Hours
Curved Surfaces, Quadric Surfaces, Super quadrics, OpenGL Quadric-Surface and			
Cubic-Surface Functions, Blobby Objects, Spline Representations, Cubic-Spline			
Interpolation Methods, Bezier Spline Curves, Bazier Surfaces B-Spline Curves, B-			
Spline Surfaces, Beta- Splines, Retional Splines, Conversion Between Spline			
Expresentations, Displaying Spline Curves and flaces, OpenGL Approximation-Spline			
PSD T root Fractal Coometry Methods, Shape Grammars and Others Procedural			
Methods Particle Systems Physically Based Modeling Visualization Of Data Sets			
Mediods, 1 article Systems, 1 mysican's Dased Modernig, Visuanzation Of Data Sets.			
Wights Surface Detection Methods: Cl	agification Of Visible	Surface Detection	Q Uoung
Algorithms Back Face Method Denth I	Suffer Method A Buffer I	-Surface Detection	o 110u1 5
Method BSP-Tree Method Area-Subdivision Method Octree Methods Ray-			
Casting Method, Comparison of Visibility –Detection Methods, Curved Surfaces.			
Wire-Frame Visibility –De tection Function	18	dived Sullaces	,
Module 3			
Illumination Models and Surface- Rendering Methods: Light Sources, Surface			8 Hours
Lighting Effects, Basic Illumination Models, Transparent Surfaces, Atmospheric			;
Effects, Shadows, Camera parameters, Displaying light intensities, Halftone patterns			
anddithering techniques, polygon rendering methods, ray-tracing methods, Radiosity			7
lighting model, Environment mapping, Photon mapping, Adding surface details,			,
Modeling surface details with polygon	s, Texture mapping, Bump	mapping, OpenGL	
Illumination and surface-rendering function	s, openGL texture functions	5.	
Module 4			
Color models, color applications and Comp	uter animation: Properties o	f light, Color	8 Hours
models, Standard primaries and the chromaticity diagram, The RGB color model, The			
YIQ and related color models, The CMY and CMYK color models, The HSV color			
model, The HLS color model, Color Selection and applications. Raster methods for			•
computer animation, Design of animations sequences, Iraditional animation			
Key frame systems Motion specification Articulated forme animation languages,			,
motions OpenGL animation procedures			
Module 5			
Hierarchical modeling and Graphics file f	ormate: Rasic modeling an	ncents Modeling	8 Hours
nackages General hierarchical modeling m	ethods Hierarchical mode	ling using openGI	
display list. Image-File configurations	Color-reduction methods	File-compression	
techniques, Composition of the major file for	ormats.	Fression	

Course Outcomes

The students should be able to:

- Discuss and implement images and objects using 3D representation and openGL methodologies.
- Design and develop surface detection using various detection methods.
- Choose various illumination models for provides effective standards of objects.
- Design of develop effective computer animations.

Question paper pattern:

The question paper will have ten questions.

There will be 2 questions from each module.

Each question will have questions covering all the topics under a module. The students will have to answer 5 full questions, selecting one full question from each module.

Text Books:

- 1. Computer Graphics with openGL-Hearn Baker 4rd edition, Pearson publication.2010.
- 2. James D Foley, Andries van dam, Steven K Feiner, John F Hughes, Computer graphics, Pearson Education 3rd edition, 2013.
- 1. Edward Angel: Interactive Computer graphics a top-down approach with openGL, Addison Wesley, 6th edition 2012.
- 2. Advanced graphics programming using openGL: Tom Mc Reynolds-David Blythe. Elesvier.MK, 2005.