PROBABILITY STATISTICS AND QUEUING THEORY [As per Choice Based Credit Sys tem (CBCS) scheme] (Effective from the academic year 2016 -2017)

SEMESTER – I					
Subject Code	16LNI14 / 16SCN14/ 16SCS14 / 16SSE14 / 16SIT14 /16SCE14 / 16SFC14	IA Marks	20		
Number of Lecture Hours/Week	04	Exam Marks	80		
Total Number of Lecture Hours	50	Exam Hours	03		
CREDITS – 04					

Course objectives: This course will enable students to

• Develop analytical capability and to impart knowledge of Probability, Statistics and Queuing. Apply above concepts in Engineering and Technology. •

Acquire knowledge of Hypothesis testing and Queuing methods and their applications so • as to enable them to apply them for solving real world problems

	Module 1	Teaching
		Hours
	Axioms of probability, Conditional probability, Total probability, Baye's theorem,	10 Hours
	Discrete Random variable, Probability mass function, Continuous Random variable.	
	Probability density function, Cumulative Distribution Function, and its properties,	
	Two-dimensional Random variables, Joint pdf / cdf and their properties	
	Module 2	
	Probability Distributions / Discrete distributions: Binomial, Poisson Geometric and	10 Hours
Hyper-geometric distributions and their properties. Continuous distributions: Uniform,		
	Normal, exponential distributions and their properties.	
	Module 3	
	Random Processes: Classification, Methods of description, Special classes, Average	10 Hours
	values of Random Processes, Analytical representation of Random Process,	
	Autocorrelation Function, Cross-correlation function and their properties, Ergodicity,	
	Poisson process, Markov Process, Markov chain.	
	Module 4	
1	Testing Hypothesis: Testing of Hypothesis: Formulation of Null hypothesis critical	10 Hours

Testing Hypothesis: Testing of Hypothesis: Formulation of Null hypothesis, critical 10 Hours

region Small	, level of significance, errors in testing, Tests of significance for Large and Samples, t-distribution, its properties and uses, F-distribution, its properties			
fit, $\chi 2$	test for Independence χ^2 – test for goodness of			
Modu	le 5			
Symbo	blic Representation of a Queuing Model, Poisson Queue system, Little Law, 10 Hours			
Types M/M/s	of Stochastic Processes, Birth-Death Process, The M/M/1 Queuing System, The Source of Stochastic Processes, Birth-Death Process, The M/M/1 Queuing System, The M/M/1 Queuing with Finite buffers.			
Cours	e Outcomes			
The students should be able to:				
•	• Demonstrate use of probability and characterize probability models using probability mass (density) functions & cumulative distribution functions.			
•	• Explain the techniques of developing discrete & continuous probability distributions and its applications.			
•	• Describe a random process in terms of its mean and correlation functions.			
• Outline methods of Hypothesis testing for goodness of fit.				
•	Define the terminology & nomenclature appropriate queuing theory and also distinguish various queuing models.			
The question paper will have ten questions.				
There will be 2 questions from each module.				
Each question will have questions covering all the topics under a module. The students will				
have to	answer 5 full questions, selecting one full question from each module.			
1.	Probability, Statistics and Queuing Theory, V. Sundarapandian, Eastern Economy Edition, PHI Learning Pvt. Ltd, 2009.			
Refere	nce Books:			
1.	Probability & Statistics with Reliability, Queuing and Computer Applications, 2 nd			
	Edition by Kishor. S. Trivedi, Prentice Hall of India, 2004.			
2.	Probability, Statistics and Random Processes, 1 st Edition by P Kausalya, Pearson Education, 2013.			